Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
HGG Adv ; 5(3): 100298, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38654521

RESUMEN

Lynch syndrome (LS) is the most common hereditary cancer syndrome. Heterozygous loss-of-function variants in PMS2 are linked to LS. While these variants are not directly cancer causing, reduced PMS2 function results in the accumulation of somatic variants and increased cancer risk over time due to DNA mismatch repair dysfunction. It is reasonable that other types of genetic variation that impact the expression of PMS2 may also contribute to cancer risk. The Kozak sequence is a highly conserved translation initiation motif among higher eukaryotes and is defined as the nine base pairs upstream of the translation start codon through the first four bases of the translated sequence (5'-[GTT]GCATCCATGG-3'; human PMS2: NM_000535.7). While Kozak sequence variants in PMS2 have been reported in ClinVar in patients with suspected hereditary cancer, all variants upstream of the translation start site are currently classified as variants of undetermined significance (VUSs). We hypothesized that variants significantly disrupting the Kozak sequence of PMS2 would decrease PMS2 protein expression, contributing to increased cancer risk over time. Using a dual-luciferase reporter plasmid and site-directed mutagenesis, we generated the wild-type human PMS2 and the ClinVar VUSs within the PMS2 Kozak sequence. Besides the c.1A>C variant, which is already known to be pathogenic, we implicate six additional variants as American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology (AMP) pathogenic supporting (PP) variants and classify ten as benign supporting (BP). In summary, we present a method developed for the classification of human PMS2 Kozak sequence variants that can contribute to the re-classification of VUSs identified in patients.

2.
Alzheimers Dement (N Y) ; 10(1): e12462, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500778

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is a complex disease influenced by genetics and environment. More than 75 susceptibility loci have been linked to late-onset AD, but most of these loci were discovered in genome-wide association studies (GWAS) exclusive to non-Hispanic White individuals. There are wide disparities in AD risk across racially stratified groups, and while these disparities are not due to genetic differences, underrepresentation in genetic research can further exacerbate and contribute to their persistence. We investigated the racial/ethnic representation of participants in United States (US)-based AD genetics and the statistical implications of current representation. METHODS: We compared racial/ethnic data of participants from array and sequencing studies in US AD genetics databases, including National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site (NIAGADS) and NIAGADS Data Sharing Service (dssNIAGADS), to AD and related dementia (ADRD) prevalence and mortality. We then simulated the statistical power of these datasets to identify risk variants from non-White populations. RESULTS: There is insufficient statistical power (probability <80%) to detect single nucleotide polymorphisms (SNPs) with low to moderate effect sizes (odds ratio [OR]<1.5) using array data from Black and Hispanic participants; studies of Asian participants are not powered to detect variants OR <= 2. Using available and projected sequencing data from Black and Hispanic participants, risk variants with OR = 1.2 are detectable at high allele frequencies. Sample sizes remain insufficiently powered to detect these variants in Asian populations. DISCUSSION: AD genetics datasets are largely representative of US ADRD burden. However, there is a wide discrepancy between proportional representation and statistically meaningful representation. Most variation identified in GWAS of non-Hispanic White individuals have low to moderate effects. Comparable risk variants in non-White populations are not detectable given current sample sizes, which could lead to disparities in future studies and drug development. We urge AD genetics researchers and institutions to continue investing in recruiting diverse participants and use community-based participatory research practices.

3.
Alzheimers Dement ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511601

RESUMEN

INTRODUCTION: Genome-wide association studies (GWAS) have identified loci associated with Alzheimer's disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations, may identify causal variants within GWAS loci. METHODS: We performed single common variant association analysis and rare variant aggregate analyses in the pooled population (N cases = 2184, N controls = 2383) and targeted analyses in subpopulations using WGS data from the Alzheimer's Disease Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of 83 previously identified GWAS lead variants. RESULTS: Seventeen variants were significantly associated with AD within five genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate analyses. DISCUSSION: This study demonstrates the utility of leveraging WGS to gain insights into AD loci identified via GWAS.

4.
medRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260438

RESUMEN

Phospholipase C isozymes (PLCs) hydrolyze phosphatidylinositol 4,5-bisphosphate into inositol 1,4,5-trisphosphate and diacylglycerol, important signaling molecules involved in many cellular processes. PLCG1 encodes the PLCγ1 isozyme that is broadly expressed. Hyperactive somatic mutations of PLCG1 are observed in multiple cancers, but only one germline variant has been reported. Here we describe three unrelated individuals with de novo heterozygous missense variants in PLCG1 (p.Asp1019Gly, p.His380Arg, and p.Asp1165Gly) who exhibit variable phenotypes including hearing loss, ocular pathology and cardiac septal defects. To model these variants in vivo, we generated the analogous variants in the Drosophila ortholog, small wing (sl). We created a null allele slT2A and assessed the expression pattern. sl is broadly expressed, including in wing discs, eye discs, and a subset of neurons and glia. Loss of sl causes wing size reductions, ectopic wing veins and supernumerary photoreceptors. We document that mutant flies exhibit a reduced lifespan and age-dependent locomotor defects. Expressing wild-type sl in slT2A mutant rescues the loss-of-function phenotypes whereas expressing the variants causes lethality. Ubiquitous overexpression of the variants also reduces viability, suggesting that the variants are toxic. Ectopic expression of an established hyperactive PLCG1 variant (p.Asp1165His) in the wing pouch causes severe wing phenotypes, resembling those observed with overexpression of the p.Asp1019Gly or p.Asp1165Gly variants, further arguing that these two are gain-of-function variants. However, the wing phenotypes associated with p.His380Arg overexpression are mild. Our data suggest that the PLCG1 de novo heterozygous missense variants are pathogenic and contribute to the features observed in the probands.

5.
bioRxiv ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37808736

RESUMEN

Resolving the molecular basis of a Mendelian condition (MC) remains challenging owing to the diverse mechanisms by which genetic variants cause disease. To address this, we developed a synchronized long-read genome, methylome, epigenome, and transcriptome sequencing approach, which enables accurate single-nucleotide, insertion-deletion, and structural variant calling and diploid de novo genome assembly, and permits the simultaneous elucidation of haplotype-resolved CpG methylation, chromatin accessibility, and full-length transcript information in a single long-read sequencing run. Application of this approach to an Undiagnosed Diseases Network (UDN) participant with a chromosome X;13 balanced translocation of uncertain significance revealed that this translocation disrupted the functioning of four separate genes (NBEA, PDK3, MAB21L1, and RB1) previously associated with single-gene MCs. Notably, the function of each gene was disrupted via a distinct mechanism that required integration of the four 'omes' to resolve. These included nonsense-mediated decay, fusion transcript formation, enhancer adoption, transcriptional readthrough silencing, and inappropriate X chromosome inactivation of autosomal genes. Overall, this highlights the utility of synchronized long-read multi-omic profiling for mechanistically resolving complex phenotypes.

6.
HGG Adv ; 4(4): 100232, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37663545

RESUMEN

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart defect (CHD) characterized by hypoplasia of the left ventricle and aorta along with stenosis or atresia of the aortic and mitral valves. HLHS represents only ∼4%-8% of all CHDs but accounts for ∼25% of deaths. HLHS is an isolated defect (i.e., iHLHS) in 70% of families, the vast majority of which are simplex. Despite intense investigation, the genetic basis of iHLHS remains largely unknown. We performed exome sequencing on 331 families with iHLHS aggregated from four independent cohorts. A Mendelian-model-based analysis demonstrated that iHLHS was not due to single, large-effect alleles in genes previously reported to underlie iHLHS or CHD in >90% of families in this cohort. Gene-based association testing identified increased risk for iHLHS associated with variation in CAPN2 (p = 1.8 × 10-5), encoding a protein involved in functional adhesion. Functional validation studies in a vertebrate animal model (Xenopus laevis) confirmed CAPN2 is essential for cardiac ventricle morphogenesis and that in vivo loss of calpain function causes hypoplastic ventricle phenotypes and suggest that human CAPN2707C>T and CAPN21112C>T variants, each found in multiple individuals with iHLHS, are hypomorphic alleles. Collectively, our findings show that iHLHS is typically not a Mendelian condition, demonstrate that CAPN2 variants increase risk of iHLHS, and identify a novel pathway involved in HLHS pathogenesis.


Asunto(s)
Síndrome del Corazón Izquierdo Hipoplásico , Animales , Humanos , Síndrome del Corazón Izquierdo Hipoplásico/genética , Alelos , Aorta , Calpaína/genética , Ventrículos Cerebrales
7.
medRxiv ; 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37693453

RESUMEN

INTRODUCTION: Genome-wide association studies (GWAS) have identified loci associated with Alzheimer's disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations, may identify causal variants within GWAS loci. METHODS: We performed single common variant association analysis and rare variant aggregate analyses in the pooled population (N cases=2,184, N controls=2,383) and targeted analyses in sub-populations using WGS data from the Alzheimer's Disease Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of 83 previously identified GWAS lead variants. RESULTS: Seventeen variants were significantly associated with AD within five genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate analyses. DISCUSSION: This study demonstrates the utility of leveraging WGS to gain insights into AD loci identified via GWAS.

8.
medRxiv ; 2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37693521

RESUMEN

Alzheimer's Disease (AD) is a common disorder of the elderly that is both highly heritable and genetically heterogeneous. Here, we investigated the association between AD and both common variants and aggregates of rare coding and noncoding variants in 13,371 individuals of diverse ancestry with whole genome sequence (WGS) data. Pooled-population analyses identified genetic variants in or near APOE, BIN1, and LINC00320 significantly associated with AD (p < 5×10-8). Population-specific analyses identified a haplotype on chromosome 14 including PSEN1 associated with AD in Hispanics, further supported by aggregate testing of rare coding and noncoding variants in this region. Finally, we observed suggestive associations (p < 5×10-5) of aggregates of rare coding rare variants in ABCA7 among non-Hispanic Whites (p=5.4×10-6), and rare noncoding variants in the promoter of TOMM40 distinct of APOE in pooled-population analyses (p=7.2×10-8). Complementary pooled-population and population-specific analyses offered unique insights into the genetic architecture of AD.

9.
Neurol Genet ; 9(5): e200090, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37560121

RESUMEN

Objectives: Transcript sequencing of patient-derived samples has been shown to improve the diagnostic yield for solving cases of suspected Mendelian conditions, yet the added benefit of full-length long-read transcript sequencing is largely unexplored. Methods: We applied short-read and full-length transcript sequencing and mitochondrial functional studies to a patient-derived fibroblast cell line from an individual with neuropathy that previously lacked a molecular diagnosis. Results: We identified an intronic homozygous MFN2 c.600-31T>G variant that disrupts the branch point critical for intron 6 splicing. Full-length long-read isoform complementary DNA (cDNA) sequencing after treatment with a nonsense-mediated mRNA decay (NMD) inhibitor revealed that this variant creates 5 distinct altered splicing transcripts. All 5 altered splicing transcripts have disrupted open reading frames and are subject to NMD. Furthermore, a patient-derived fibroblast line demonstrated abnormal lipid droplet formation, consistent with MFN2 dysfunction. Although correctly spliced full-length MFN2 transcripts are still produced, this branch point variant results in deficient MFN2 levels and autosomal recessive Charcot-Marie-Tooth disease, axonal, type 2A (CMT2A). Discussion: This case highlights the utility of full-length isoform sequencing for characterizing the molecular mechanism of undiagnosed rare diseases and expands our understanding of the genetic basis for CMT2A.

10.
Blood Cells Mol Dis ; 103: 102782, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37558590

RESUMEN

People hospitalized with COVID-19 often exhibit altered hematological traits associated with disease prognosis (e.g., lower lymphocyte and platelet counts). We investigated whether inter-individual variability in baseline hematological traits influences risk of acute SARS-CoV-2 infection or progression to severe COVID-19. We report inconsistent associations between blood cell traits with incident SARS-CoV-2 infection and severe COVID-19 in UK Biobank and the Vanderbilt University Medical Center Synthetic Derivative (VUMC SD). Since genetically determined blood cell measures better represent cell abundance across the lifecourse, we also assessed the shared genetic architecture of baseline blood cell traits on COVID-19 related outcomes by Mendelian randomization (MR) analyses. We found significant relationships between COVID-19 severity and mean sphered cell volume after adjusting for multiple testing. However, MR results differed significantly across different freezes of COVID-19 summary statistics and genetic correlation between these traits was modest (0.1), decreasing our confidence in these results. We observed overlapping genetic association signals between other hematological and COVID-19 traits at specific loci such as MAPT and TYK2. In conclusion, we did not find convincing evidence of relationships between the genetic architecture of blood cell traits and either SARS-CoV-2 infection or COVID-19 hospitalization, though we do see evidence of shared signals at specific loci.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , Pruebas Genéticas , Fenotipo , Centros Médicos Académicos , Estudio de Asociación del Genoma Completo
11.
HGG Adv ; 4(3): 100207, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37333771

RESUMEN

Alzheimer disease (AD) is the most common form of senile dementia, with high incidence late in life in many populations including Caribbean Hispanic (CH) populations. Such admixed populations, descended from more than one ancestral population, can present challenges for genetic studies, including limited sample sizes and unique analytical constraints. Therefore, CH populations and other admixed populations have not been well represented in studies of AD, and much of the genetic variation contributing to AD risk in these populations remains unknown. Here, we conduct genome-wide analysis of AD in multiplex CH families from the Alzheimer Disease Sequencing Project (ADSP). We developed, validated, and applied an implementation of a logistic mixed model for admixture mapping with binary traits that leverages genetic ancestry to identify ancestry-of-origin loci contributing to AD. We identified three loci on chromosome 13q33.3 associated with reduced risk of AD, where associations were driven by Native American (NAM) ancestry. This AD admixture mapping signal spans the FAM155A, ABHD13, TNFSF13B, LIG4, and MYO16 genes and was supported by evidence for association in an independent sample from the Alzheimer's Genetics in Argentina-Alzheimer Argentina consortium (AGA-ALZAR) study with considerable NAM ancestry. We also provide evidence of NAM haplotypes and key variants within 13q33.3 that segregate with AD in the ADSP whole-genome sequencing data. Interestingly, the widely used genome-wide association study approach failed to identify associations in this region. Our findings underscore the potential of leveraging genetic ancestry diversity in recently admixed populations to improve genetic mapping, in this case for AD-relevant loci.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Estudio de Asociación del Genoma Completo , Hispánicos o Latinos/genética , Sitios Genéticos/genética , Etnicidad
12.
Ann Clin Transl Neurol ; 10(6): 1046-1053, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37194416

RESUMEN

SLC1A4 is a trimeric neutral amino acid transporter essential for shuttling L-serine from astrocytes into neurons. Individuals with biallelic variants in SLC1A4 are known to have spastic tetraplegia, thin corpus callosum, and progressive microcephaly (SPATCCM) syndrome, but individuals with heterozygous variants are not thought to have disease. We identify an 8-year-old patient with global developmental delay, spasticity, epilepsy, and microcephaly who has a de novo heterozygous three amino acid duplication in SLC1A4 (L86_M88dup). We demonstrate that L86_M88dup causes a dominant-negative N-glycosylation defect of SLC1A4, which in turn reduces the plasma membrane localization of SLC1A4 and the transport rate of SLC1A4 for L-serine.


Asunto(s)
Epilepsia , Síndromes Epilépticos , Microcefalia , Humanos , Niño , Epilepsia/genética , Heterocigoto , Serina/metabolismo , Sistema de Transporte de Aminoácidos ASC/genética , Sistema de Transporte de Aminoácidos ASC/metabolismo
13.
Nat Aging ; 3(7): 894-907, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37248328

RESUMEN

Microglia, the innate immune cells of the brain, influence Alzheimer's disease (AD) progression and are potential therapeutic targets. However, microglia exhibit diverse functions, the regulation of which is not fully understood, complicating therapeutics development. To better define the transcriptomic phenotypes and gene regulatory networks associated with AD, we enriched for microglia nuclei from 12 AD and 10 control human dorsolateral prefrontal cortices (7 males and 15 females, all aged >60 years) before single-nucleus RNA sequencing. Here we describe both established and previously unrecognized microglial molecular phenotypes, the inferred gene networks driving observed transcriptomic change, and apply trajectory analysis to reveal the putative relationships between microglial phenotypes. We identify microglial phenotypes more prevalent in AD cases compared with controls. Further, we describe the heterogeneity in microglia subclusters expressing homeostatic markers. Our study demonstrates that deep profiling of microglia in human AD brain can provide insight into microglial transcriptional changes associated with AD.


Asunto(s)
Enfermedad de Alzheimer , Masculino , Femenino , Humanos , Enfermedad de Alzheimer/genética , Microglía , Perfilación de la Expresión Génica , Transcriptoma/genética , Encéfalo
14.
J Cyst Fibros ; 22(5): 857-863, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37217389

RESUMEN

BACKGROUND: Pseudomonas aeruginosa (Pa) infection in cystic fibrosis (CF) is characterized in stages: never (prior to first positive culture) to incident (first positive culture) to chronic. The association of Pa infection stage with lung function trajectory is poorly understood and the impact of age on this association has not been examined. We hypothesized that FEV1 decline would be slowest prior to Pa infection, intermediate after incident infection and greatest after chronic Pa infection. METHODS: Participants in a large US prospective cohort study diagnosed with CF prior to age 3 contributed data through the U.S. CF Patient Registry. Cubic spline linear mixed effects models were used to evaluate the longitudinal association of Pa stage (never, incident, chronic using 4 different definitions) with FEV1 adjusted for relevant covariates. Models contained interaction terms between age and Pa stage. RESULTS: 1,264 subjects born 1992-2006 provided a median 9.5 (IQR 0.25 to 15.75) years of follow up through 2017. 89% developed incident Pa; 39-58% developed chronic Pa depending on the definition. Compared to never Pa, incident Pa infection was associated with greater annual FEV1 decline and chronic Pa infection with the greatest FEV1 decline. The most rapid FEV1 decline and strongest association with Pa infection stage was seen in early adolescence (ages 12-15). CONCLUSIONS: Annual FEV1 decline worsens significantly with each Pa infection stage in children with CF. Our findings suggest that measures to prevent chronic infection, particularly during the high-risk period of early adolescence, could mitigate FEV1 decline and improve survival.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Adolescente , Humanos , Niño , Preescolar , Fibrosis Quística/complicaciones , Fibrosis Quística/diagnóstico , Fibrosis Quística/epidemiología , Infecciones por Pseudomonas/diagnóstico , Infecciones por Pseudomonas/epidemiología , Infecciones por Pseudomonas/complicaciones , Estudios Prospectivos , Pruebas de Función Respiratoria , Pseudomonas aeruginosa , Pulmón
15.
Dis Model Mech ; 16(4)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37083955

RESUMEN

Split hand/foot malformation (SHFM) is a rare limb abnormality with clefting of the fingers and/or toes. For many individuals, the genetic etiology is unknown. Through whole-exome and targeted sequencing, we detected three novel variants in a gene encoding a transcription factor, PRDM1, that arose de novo in families with SHFM or segregated with the phenotype. PRDM1 is required for limb development; however, its role is not well understood and it is unclear how the PRDM1 variants affect protein function. Using transient and stable overexpression rescue experiments in zebrafish, we show that the variants disrupt the proline/serine-rich and DNA-binding zinc finger domains, resulting in a dominant-negative effect. Through gene expression assays, RNA sequencing, and CUT&RUN in isolated pectoral fin cells, we demonstrate that Prdm1a directly binds to and regulates genes required for fin induction, outgrowth and anterior/posterior patterning, such as fgfr1a, dlx5a, dlx6a and smo. Taken together, these results improve our understanding of the role of PRDM1 in the limb gene regulatory network and identified novel PRDM1 variants that link to SHFM in humans.


Asunto(s)
Deformidades Congénitas de las Extremidades , Pez Cebra , Animales , ADN , Deformidades Congénitas de las Extremidades/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Factores de Transcripción/genética , Pez Cebra/genética , Dedos de Zinc
16.
Am J Respir Crit Care Med ; 207(10): 1324-1333, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36921087

RESUMEN

Rationale: Lung disease is the major cause of morbidity and mortality in persons with cystic fibrosis (pwCF). Variability in CF lung disease has substantial non-CFTR (CF transmembrane conductance regulator) genetic influence. Identification of genetic modifiers has prognostic and therapeutic importance. Objectives: Identify genetic modifier loci and genes/pathways associated with pulmonary disease severity. Methods: Whole-genome sequencing data on 4,248 unique pwCF with pancreatic insufficiency and lung function measures were combined with imputed genotypes from an additional 3,592 patients with pancreatic insufficiency from the United States, Canada, and France. This report describes association of approximately 15.9 million SNPs using the quantitative Kulich normal residual mortality-adjusted (KNoRMA) lung disease phenotype in 7,840 pwCF using premodulator lung function data. Measurements and Main Results: Testing included common and rare SNPs, transcriptome-wide association, gene-level, and pathway analyses. Pathway analyses identified novel associations with genes that have key roles in organ development, and we hypothesize that these genes may relate to dysanapsis and/or variability in lung repair. Results confirmed and extended previous genome-wide association study findings. These whole-genome sequencing data provide finely mapped genetic information to support mechanistic studies. No novel primary associations with common single variants or rare variants were found. Multilocus effects at chr5p13 (SLC9A3/CEP72) and chr11p13 (EHF/APIP) were identified. Variant effect size estimates at associated loci were consistently ordered across the cohorts, indicating possible age or birth cohort effects. Conclusions: This premodulator genomic, transcriptomic, and pathway association study of 7,840 pwCF will facilitate mechanistic and postmodulator genetic studies and the development of novel therapeutics for CF lung disease.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/genética , Estudio de Asociación del Genoma Completo/métodos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Gravedad del Paciente , Pulmón , Proteínas Asociadas a Microtúbulos/genética
17.
Am J Med Genet A ; 191(6): 1546-1556, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36942736

RESUMEN

The etiology of biliary atresia (BA) is unknown, but recent studies suggest a role for rare protein-altering variants (PAVs). Exome sequencing data from the National Birth Defects Prevention Study on 54 child-parent trios, one child-mother duo, and 1513 parents of children with other birth defects were analyzed. Most (91%) cases were isolated BA. We performed (1) a trio-based analysis to identify rare de novo, homozygous, and compound heterozygous PAVs and (2) a case-control analysis using a sequence kernel-based association test to identify genes enriched with rare PAVs. While we replicated previous findings on PKD1L1, our results do not suggest that recurrent de novo PAVs play important roles in BA susceptibility. In fact, our finding in NOTCH2, a disease gene associated with Alagille syndrome, highlights the difficulty in BA diagnosis. Notably, IFRD2 has been implicated in other gastrointestinal conditions and warrants additional study. Overall, our findings strengthen the hypothesis that the etiology of BA is complex.


Asunto(s)
Atresia Biliar , Humanos , Atresia Biliar/epidemiología , Atresia Biliar/genética , Atresia Biliar/diagnóstico , Exoma/genética , Homocigoto , Padres , Estudios de Casos y Controles , Proteínas de la Membrana/genética
18.
bioRxiv ; 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36798371

RESUMEN

Objectives: Transcript sequencing of patient derived samples has been shown to improve the diagnostic yield for solving cases of likely Mendelian disorders, yet the added benefit of full-length long-read transcript sequencing is largely unexplored. Methods: We applied short-read and full-length isoform cDNA sequencing and mitochondrial functional studies to a patient-derived fibroblast cell line from an individual with neuropathy that previously lacked a molecular diagnosis. Results: We identified an intronic homozygous MFN2 c.600-31T>G variant that disrupts a branch point critical for intron 6 spicing. Full-length long-read isoform cDNA sequencing after treatment with a nonsense-mediated mRNA decay (NMD) inhibitor revealed that this variant creates five distinct altered splicing transcripts. All five altered splicing transcripts have disrupted open reading frames and are subject to NMD. Furthermore, a patient-derived fibroblast line demonstrated abnormal lipid droplet formation, consistent with MFN2 dysfunction. Although correctly spliced full-length MFN2 transcripts are still produced, this branch point variant results in deficient MFN2 protein levels and autosomal recessive Charcot-Marie-Tooth disease, axonal, type 2A (CMT2A). Discussion: This case highlights the utility of full-length isoform sequencing for characterizing the molecular mechanism of undiagnosed rare diseases and expands our understanding of the genetic basis for CMT2A.

19.
Am J Respir Crit Care Med ; 207(10): 1345-1357, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36622818

RESUMEN

Rationale and Objectives: Up to 20% of idiopathic interstitial lung disease is familial, referred to as familial pulmonary fibrosis (FPF). An integrated analysis of FPF genetic risk was performed by comprehensively evaluating for genetic rare variants (RVs) in a large cohort of FPF kindreds. Methods: Whole-exome sequencing and/or candidate gene sequencing from affected individuals in 569 FPF kindreds was performed, followed by cosegregation analysis in large kindreds, gene burden analysis, gene-based risk scoring, cell-type enrichment analysis, and coexpression network construction. Measurements and Main Results: It was found that 14.9-23.4% of genetic risk in kindreds could be explained by RVs in genes previously linked to FPF, predominantly telomere-related genes. New candidate genes were identified in a small number of families-including SYDE1, SERPINB8, GPR87, and NETO1-and tools were developed for evaluation and prioritization of RV-containing genes across kindreds. Several pathways were enriched for RV-containing genes in FPF, including focal adhesion and mitochondrial complex I assembly. By combining single-cell transcriptomics with prioritized candidate genes, expression of RV-containing genes was discovered to be enriched in smooth muscle cells, type II alveolar epithelial cells, and endothelial cells. Conclusions: In the most comprehensive FPF genetic study to date, the prevalence of RVs in known FPF-related genes was defined, and new candidate genes and pathways relevant to FPF were identified. However, new RV-containing genes shared across multiple kindreds were not identified, thereby suggesting that heterogeneous genetic variants involving a variety of genes and pathways mediate genetic risk in most FPF kindreds.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Fibrosis Pulmonar , Humanos , Fibrosis Pulmonar/genética , Células Endoteliales , Enfermedades Pulmonares Intersticiales/genética , Factores de Riesgo , Telómero , Predisposición Genética a la Enfermedad/genética , Receptores del Ácido Lisofosfatídico/genética
20.
Nucleic Acids Res ; 51(D1): D1300-D1311, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36350676

RESUMEN

Large biobank-scale whole genome sequencing (WGS) studies are rapidly identifying a multitude of coding and non-coding variants. They provide an unprecedented resource for illuminating the genetic basis of human diseases. Variant functional annotations play a critical role in WGS analysis, result interpretation, and prioritization of disease- or trait-associated causal variants. Existing functional annotation databases have limited scope to perform online queries and functionally annotate the genotype data of large biobank-scale WGS studies. We develop the Functional Annotation of Variants Online Resources (FAVOR) to meet these pressing needs. FAVOR provides a comprehensive multi-faceted variant functional annotation online portal that summarizes and visualizes findings of all possible nine billion single nucleotide variants (SNVs) across the genome. It allows for rapid variant-, gene- and region-level queries of variant functional annotations. FAVOR integrates variant functional information from multiple sources to describe the functional characteristics of variants and facilitates prioritizing plausible causal variants influencing human phenotypes. Furthermore, we provide a scalable annotation tool, FAVORannotator, to functionally annotate large-scale WGS studies and efficiently store the genotype and their variant functional annotation data in a single file using the annotated Genomic Data Structure (aGDS) format, making downstream analysis more convenient. FAVOR and FAVORannotator are available at https://favor.genohub.org.


Asunto(s)
Genoma Humano , Programas Informáticos , Humanos , Anotación de Secuencia Molecular , Genómica , Genotipo , Variación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...